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Chapter 1

Introduction

Proof theory may be roughly divided into two parts: structural proof theory
and interpretational proof theory. Structural proof theory is based on a com-
binatorial analysis of the structure of formal proofs; the central methods are
cut elimination and normalization.

In interpretational proof theory, the tools are (often semantically moti-
vated) syntactical translations of one formal theory into another. We shall
encounter examples of such translations in this book, such as the Godel-
Gentzen embedding of classical logic into minimal logic (2.3), and the modal
embedding of intuitionistic logic into the modal logic S4 (9.2). Other well-
known examples from the literature are the formalized version of Kleene’s
realizability for intuitionistic arithmetic and Godel’s Dialectica interpretation
(see, for example, Troelstra [1973]).

The present text is concerned with the more basic parts of structural proof
theory. In the first part of this text (chapters 2-7) we study several formal-
izations of standard logics. “Standard logics”, in this text, means minimal,
intuitionistic and classical first-order predicate logic. Chapter 8 describes
the connection between cartesian closed categories and minimal conjunction-
implication logic; this serves as an example of the applications of proof theory
in category theory. Chapter 9 illustrates the extension to other logics (namely
the modal logic S4 and linear logic) of the techniques introduced before in
the study of standard logics. The final two chapters deal with first-order
arithmetic and second-order logic respectively.

The first section of this chapter contains notational conventions and def-
initions, to be consulted only when needed, so a quick scan of the contents
will suffice to begin with. The second section presents a concise introduction
to simple type theory, with rigid typing; the parallel between (extensions of)
simple type theory and systems of natural deduction, under the catch-phrase
“formulas-as-types”’, is an important theme in the sequel. Then follows a
brief informal introduction to the three principal types of formalism we shall
encounter later on, the N-, H- and G-systems, or Natural deduction, Hilbert
systems, and Gentzen systems respectively. Formal definitions of these sys-
tems will be given in chapters 2 and 3.

1



2 Chapter 1. Introduction

1.1 Preliminaries

The material in this section consists primarily of definitions and notational
conventions, and may be skipped until needed.

Some very general abbreviations are “iff” for “if and only if”, “IH” for “in-
duction hypothesis”, “w.l.0.g.” for “without loss of generality”. To indicate
literal identity of two expressions, we use =. (In dealing with expressions
with bound variables, this is taken to be literal identity modulo renaming of
bound variables; see 1.1.2 below.)

The symbol & is used to mark the end of proofs, definitions, stipulations
of notational conventions.

IN is used for the natural numbers, zero included. Set-theoretic notations
such as €, C are standard.

1.1.1. The language of first-order predicate logic

The standard language considered contains V, A, —, 1,V, 3 as primitive logi-
cal operators (L being the degenerate case of a zero-place logical operator, i.e.
a logical constant), countably infinite supplies of individual variables, n-place
relation symbols for all n € IN, symbols for n-ary functions for all n € IN.
0-place relation symbols are also called proposition letters or proposition vari-
ables; O-argument function symbols are also called (individual) constants.
The language will not, unless stated otherwise, contain = as a primitive.

Atomic formulas are formulas of the form Rt;...t¢,, R a relation symbol,
ti,...,t, individiual terms, 1 is not regarded as atomic. For formulas which
are either atomic or . we use the term prime formula

We use certain categories of letters, possibly with sub- or superscripts or
primed, as metavariables for certain syntactical categories (locally different
conventions may be introduced):

e 1.y, 2z, u,v,w for individual variables;

£, g, h for arbitrary function symbols;

¢, d for individual constants;

e t 5,7 for arbitrary terms;

P, @ for atomic formulas;

R for relation symbols of the language;

e A B,C,D, E,F for arbitrary formulas in the language.
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NOTATION. For the countable set of proposition variables we write PY. We
introduce abbreviations:

Ao B:=(A— B)A(B— A),

-A =A- 4,
T =1 1.

In this text, T (“truth”) is sometimes added as a primitive. If I is a finite
sequence Ai,...,A, of formulas, AT is the iterated conjunction {...{A4; A
Ay) A ... An), and \/ T the iterated disjunction (... (4; VA2) V... 4,). IfT
is empty, we identify \/I" with L, and AT with T. X

NOTATION. (Saving on parentheses) In writing formulas we save on paren-
theses by assuming that V,3,— bind more strongly than V, A, and that in
turn V, A bind more strongly than —, <». Outermost parentheses are also
usually dropped. Thus A A =B — C is read as ((AA (-B)) — C). In the
case of iterated implications we sometimes use the short notation

Al‘—‘)AQ—)...An_I-—)An for Al—)(AQ—-)(An_l——}An))

We also save on parentheses by writing e.g. Rzyz, Riotits instead of R(z,y, z),
R(to,t1,t2), where R is some predicate letter. Similarly for a unary function
symbol with a (typographically) simple argument, so fz for f(z), etc. In this
case no confusion will arise. But readability requires that we write in full
R(fx, gy, hz), instead of Rfzgyhz. X

1.1.2. Substitution, free and bound variables

Expressions £,&’ which differ only in the names of bound variables will be
regarded by us as identical. This is sometimes expressed by saying that £
and &' are a-equivalent. In other words, we are only interested in certain
equivalence classes of (the concrete representations of) expressions, expres-
sions “modulo renaming of bound variables”. There are methods of finding
unique representatives for such equivalence classes, for example the namefree
terms of de Bruijn [1972]. See also Barendregt (1984, Appendix C}.

For the human reader such representations are less convenient, so we shall
stick to the use of bound variables. But it should be realized that the issues of
handling bound variables, renaming procedures and substitution are essential
and non-trivial when it comes to implementing algorithms.

In the definition of “substitution of expression £’ for variable z in expression
E7, either one requires that no variable free in £’ becomes bound by a variable-
binding operator in £, when the free occurrences of x are replaced by &’ {also
expressed by saying that there must be no “clashes of variables”), “£’ is free
for x in €7, or the substitution operation is taken to involve a systematic
renaming operation for the bound variables, avoiding clashes. Having stated
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that we are only interested in expressions modulo renaming bound variables,
we can without loss of generality assume that substitution is always possible.

Also, it is never a real restriction to assume that distinct quantifier occur-
rences are followed by distinct variables, and that the sets of bound and free
variables of a formula are disjoint.

NOTATION. “FV” is used for the (set of) free variables of an expression; so
FV(¢) is the set of variables free in the term t, FV(A4) the set of variables free
in formula A etc.

E[z/t] denotes the result of substituting the term ¢ for the variable x in the
expression £. Similarly, £[Z/t] is the result of simultaneously substituting
the terms £ = t1,...,t, for the variables ¥ = z;, ..., z, respectively.

For substitutions of predicates for predicate variables (predicate symbols)
we ‘use essentially the same notational conventions. If in a formula A, con-
taining an n-ary relation variable X™, X" is to be replaced by a formula
B, seen as an n-ary predicate of n of its variables ¥ = zy,..., z,, we write
A[X"™/AZ.B] for the formula which is obtained from A by replacing every
occurrence X"t by B[Z/t] (neither individual variables nor relation variables
of Vi B are allowed to become bound when substituting).

Note that B may contain other free variables besides Z, and that the “AT”
is needed to indicate which terms are substituted for which variables.

Locally we shall adopt the following convention. In an argument, once a
formula has been introduced as A(z), i.e., A with a designated free variable
z, we write A(t) for A[z/t], and similarly with more variables. X

1.1.3. Subformulas

DEFINITION. (Gentzen subformula) Unless stated otherwise, the notion of
subformula we use will be that of a subformula in the sense of Gentzen.
(Gentzen) subformulas of A are defined by

(i) A is a subformula of A;
(i) if B o C is a subformula of A then so are B, C, for o = V, A, —;

(i) if V2B or dzB is a subformula of A, then so is B[z/t], for all ¢ free for
zin B.

If we replace the third clause by:
(ili)’ if YzB or 3z B is a subformula of A then so is B,

we obtain the notion of literal subformula. X
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DEFINITION. The notions of positive, negative, strictly positive subformula
are defined in a similar style:

(i) A is a positive and a stricly positive subformula of itself;

(ii) if BAC or BV C is a positive [negative, strictly positive] subformula
of A, then so are B, C;

(ili} if VzB or 3z B is a positive [negative, strictly positive] subformula of 4,
then so is B[z/t] for any ¢ free for z in B;

(iv) if B — C is a positive [negative] subformula of A, then B is a negative
[positive] subformula of A, and C is a positive [negative] subformula of
4;

(v) if B — C is a strictly positive subformula of A then so is C.

A strictly positive subformula of A is also called a strictly positive part (s.p.p.)
of A. Note that the set of subformulas of A is the union of the positive and
the negative subformulas of A.

Literal positive, negative, strictly positive subformulas may be defined in
the obvious way by restricting the clause for quantifiers. X

ExaMPLE. (P — Q) — RV VzR'(z) has as s.p.p.’s the whole formula,
RVYVzR'(z), R, VzR'(z), R'(t). The positive subformulas are the s.p.p.’s and
in addition P; the negative subformulas are P — Q, Q.

1.1.4. Contexts and formula occurrences

Formula occurrences (f.0.’s) will play an even more important role than the
formulas themselves. An f.o. is nothing but a formula with a position in
another structure (prooftree, sequent, a larger formula etc.). If no confusion
is to be feared, we shall permit ourselves a certain “abus de langage” and talk
about formulas when really f.0.’s are meant.

The notion of a (sub)formula occurrence in a formula or sequent is intu-
itively obvious, but for formal proofs of metamathematical properties it is
sometimes necessary to use a rigorous formal definition. This may be given
via the notion of a context. Roughly speaking, a context is nothing but a for-
mula with an occurrence of a special propositional variable, a “placeholder”.
Alternatively, a context is sometimes described as a formula with a hole in it.

DEFINITION. We define positive (P) and negative (formula-)contexts (N)
simultaneously by an inductive definition given by the three clauses (i)-(iii)
below. The symbol “#” in clause (i} functions as a special proposition letter
(not in the language of predicate logic), a placeholder so to speak.
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(i) = €P;
and if Bt € P, B~ € NV, and A is any formula, then
(ii} AAB*, BYAA, AvB*, B¥VA, A—»BY, B-—A, VzB*, 3zB* € P;
(iii) AAB™, B"AA, AVB~, B"VA, A—»B~, B*—A,VzB~, 32B~ € N.

The set of formula contexts is the union of P and A. Note that a context
contains always only a single occurrence of *. We may think of a context as
a formula in the language extended by x, in which * occurs only once. In a
positive [negative] context, * is a positive [negative] subformula. Below we
give a formal definition of (sub)formula occurrence via the notion of context.

For arbitrary contexts we sometimes write F[x|, G[#|, ... . Then F[4],
G[A], ... are the formulas obtained by replacing * by A {literally, without
renaming variables).

The notion of context may be generalized to a context with several place-
holders *i,...,#,, which are treated as extra proposition variables, each of
which may occur only once in the context.

The strictly positive contexts SP are defined by

(iv) x € 8P; and if B € SP, then
(v ANB,BANA,AVB,BVA, A— B, VzB, 3xB € SP.
An alternative style of presentation of this definition is

P=%x|AAP|PAA|AVP|PVA|A—=P|N = A|VzP | P,
N=AAN|NANAJAVN [ NVA|ASN|P o A|VaN | 32N,
SP=x|ANSP|SPAA|AVSP|SPVA|A— SP|VzSP | 3zSP.

A formula occurrence (f.o. for short) in a formula B is a literal subformula
A together with a context indicating the place where A occurs (so B may be
obtained by replacing * in the context by A). In the obvious way we can now
define positive, strictly positive and negative occurrence. X

1.1.5. Finite multisets

Finite multisets, i.e. “sets with multiplicity”, or to put it otherwise, finite
sequences modulo the ordering, will play an important role in this text.

NotaTION. If A is a multiset, we use |A| for the number of its elements. For
the multiset union of I and A we write ['U A or in certain situations simply
I'A or even A (namely when writing sequents, which will be introduced
later}. The notation I', A or I'A then designates a multiset which is the union
of I" and the singleton multiset containing only A.
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If “c” is some unary operator and I' = A;,..., A, is a finite multiset of
formulas, we write cI” for the multiset cA44,...,cA4,.

Finite sets may be regarded as special cases of finite multisets: a multiset
where each element occurs with multiplicity one represents a finite set. For
the set underlying a multiset I', we write Set(I); this multiset contains the
formulas of I with multiplicity one. X

NOTATION. We shall use the notations AT, \/I" also in case T is a multiset.
AT, VT are then the conjunction, respectively disjunction of IV for some
sequence I corresponding toI'. AT, /T are then well-defined modulo logical
equivalence, as long as in our logic A,V obey the laws of symmetry and
associativity. X

DEerFINITION. The notions of (positive, negative) formula occurrence may be
defined for sequents, i.e., expressions of the form I' = A, with ', A finite
multisets, as (positive, negative) formula occurrences in the corresponding
formulas AT — V A. X

1.1.6. Deducibility and deduction from hypotheses, conservativity

NOTATION. In our formalisms, we derive either formulas or sequents (as
introduced in the preceding definition). For sequents derived in a formalism
S we write

SFT=A or FsIT'= A
and for formulas derived in S
SFA or kg A

If we want to indicate that a deduction D derives I' = A, we can write
DrksT'= A (or DFT = Aif S is evident).

For formalisms based on sequents, S = A will coincide with S = A
(sequent T' = A with T’ empty).

If a formula A is derivable from a finite multiset I' of hypotheses or as-
sumptions, we write

s A.

In systems with sequents this is equivalent to S F I' = 4. (N.B. In the
literature I' - A is sometimes given a slightly different definition for which
the deduction theorem does not hold; cf. remark in 9.1.2. Moreover, some
authors use - instead of our sequent-arrow =.)

A theory is a set of sentences (closed formulas); with each formalism is
associated a theory of deducible sentences. Since for the theories associated
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with the formalisms in this book, it is always true that the set of deducible
formulas and the set of pairs {(I', A) | T - A} are uniquely determined by
the theory, we shall also speak of formulas belonging to a theory, and use the
expression “A is deducible from I' in a theory”.

In particular, we write
'rmA, T'HA TFA

for deducibility in our standard logical theories M, I, C respectively (cf. the
next subsection). X

DEFINITION. A system S is conservative over a system S’ C S, if for formulas
A in the language of S’ we have that if S+ A, then S’ + A. For systems with
sequents, conservativity similarly means: if FI' = A in S, with ' = A in
the language of §’, then FT' = A in §'. Similarly for theories. by

1.1.7. Names for theories and systems

Where we are only interested in the logics as theories, i.e. as sets of theorems,
we use M, I and C for minimal, intuitionistic and classical predicate calculus
respectively; Mp, Ip and Cp are the corresponding propositional systems. If
we are interested only in formulas constructed from a set of operators A say,
we write 4-S or AS for the system S restricted to formulas with operators
from A. Thus —A-M is M restricted to formulas in A, — only.

On the other hand, where the notion of formal deduction is under investiga-
tion, we have to distinguish between the various formalisms characterizing the
same theory. In choosing designations, we use some mnemonic conventions:

o We use “N”, “H”, “G” for “Natural Deduction”, “Hilbert system”
and “Gentzen system” respectively. “GS” (from “Gentzen-Schiitte”)
is used as a designation for a group of calculi with one-sided sequents
(always classical).

153

o We use “c” for “classical”, “i” for “intuitionistic”, “m” for “minimal”,
“s” for “S4”, “p” for “propositional”, “e” for “E-logic”. If p is absent,
the system includes quantifiers. The superscript “?” is used for second-
order systems.

e Variants may be designated by additions of extra boldface capitals,
numbers, superscripts such as “*” etc. Thus, for example, G1lc is close
to the original sequent calculus LK of Gentzen (and G1i to Gentzen’s
LJ), G2c is a variant with weakening absorbed into the logical rules,
G3c a system with weakening and contraction absorbed into the rules,
GK (from Gentzen—Kleene) refers to Gentzen systems very close to the
system G3 of Kleene, etc.
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e In order to indicate several formal systems at once, without writing
down the exhaustive list, we use the following type of abbreviation:
S[abc] refers to Sa, Sb, Sc; S[ab][cd] refers to Sac, Sbe, Sad, Shd,
etc.; [mic] stands for “m, or i or ¢”; [mi] for “m or i”; [123] for “1,
2 or 37, etc. In such contracted statements an obvious parallelism is
maintained, e.g. “G[123]c satisfies A iff G[123]i satisfies B” is read as:
“Glc (respectively G2¢c, G3c) satisfies A iff G1i (respectively G2i,
G3i) satisfies B”.

1.1.8. Finite trees

DEFINITION. (Terminology for trees) Trees are partially ordered sets (X, <)
with a lowest element and all sets {y : y < z} for z € X linearly ordered.
The elements of X are called the nodes of the tree; branches are maximal
linearly ordered subsets of X (i.e. subsets which cannot be extended further).

Trees are supposed to grow upwards; the single node at the bottom is called
the root or bottom node of the tree. If a branch of a tree is finite, it ends in a
leaf or top node of the tree. If n,m are nodes of a tree with partial ordering
<, and n < m, then m is a successor of n, n a predecessor of m. If n < m
and there are no nodes properly between n and m, then n is an immediate
predecessor of m, and m an immediate successor of n.

A tree is said to be k-branching (strictly k-branching), if each node has at
most k (exactly k) immediate successors.

We also consider labelled trees, with a function assigning objects (e.g. for-
mulas) to the nodes. The terminology for trees is also applied to labelled
trees. X

1.1.9. DEFINITION. The length or size of a finite tree is the number of nodes
in the tree. We write s(7) for the size of 7.

The depth (of a tree) or height (of a tree) |T| of a tree T is the maximum
length of the branches in the tree, where the length of a branch is the number
of nodes in the branch minus 1.

The leafsize 1s(T) of a tree T is the number of top nodes of the tree. K

For future use we note: Let 7 be a tree which is at most k-branching, i.e.
each node has at most & (k > 1) immediate successors. Then

s(T) < KT 1s(T) < s(T).
For strictly 2-branching trees s(7) = 2Is(7) — 1.

Formulas may also be regarded as (labelled) trees. The definitions of size
and depth specialized to formulas yield the following definition.
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DEFINITION. The depth |A| of a formula A is the maximum length of a
branch in its construction tree. In other words, we define recursively |P| =0
for atomic P, |L1]| = 0, |A o B} = max(]A|,|B|) + 1 for binary operators o,
| o Al = |A| + 1 for unary operators o.

The size or length s(A) of a formula A is the number of occurrences of logical
symbols and atomic formulas (parentheses not counted) in A: s(P) = 1 for
P atomic, s(L) =0, s(Ao B) = s(A) +s(B) +1 for binary operators o, s(oA)
= s(A) + 1 for unary operators o. X

For formulas we therefore have

s(A) < 24T,

1.2 Simple type theories

This section briefly describes typed combinatory logic and typed lambda cal-
culus, and may be skipped by readers already familiar with simple type the-
ories. For more detailed information on type theories, see Barendregt [1992],
Hindley [1997]. Below, we consider only formalisms with rigid typing, i.e.
systems where every term and all subterms of a term carry a fixed type.
Hindley [1997] deals with systems of fype assignment, where untyped terms
are assigned types according to certain rules. The untyped terms may pos-
sess many different types, or no type at all. There are many parallels between
rigidly typed systems and type-assignment systems, but in the theory of type
assignment there is a host of new questions, sometimes very subtle, to study.
But theories of type assignment fall outside the scope of this book.

1.2.1. DEFINITION. (The set of simple types) The set of simple types T,
is constructed from a countable set of type variables Py, Pi, Ps, ... by means
of a type-forming operation (function-type constructor) —. In other words,
simple types are generated by two clauses:

(i) type variables belong to 7.,;

A type of the form A — B is called a function type. “Generated” means that
nothing belongs to 7, except on the basis of (i) and (ii). Since the types
have the form of propositional formulas, we can use the same abbreviations
in writing types as in writing formulas (cf. 1.1.1). X

Intuitively, types denote special sets. We may think of the type variables
as standing for arbitrary, unspecified sets, and given types A, B, the type
A — B is a set of functions from A to B.
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1.2.2.. DEFINITION. (Terms of the simply typed lambda calculus A_) All
terms appear with a type; for terms of type A we use t4, s4, 4, possibly with
extra sub- or superscripts. The terms are generated by the following three
clauses:

(i) For each A € T, there is a countably infinite supply of variables of
type A; for arbitrary variables of type A we use u?, v?, w?, x4, y4, 24

(possibly with extra sub- or superscripts);

(ii) if t47B, s* are terms of types A — B, A, then App(¢tA~58 s4)8 is a
term of type B;

(iit) if t? is a term of type B and z# a variable of type A, then (AzA.t%)475

is a term of type A — B. X

NOTATION. For App(t4~#, s4)F we usually write simply (t478s4)5.

There is a good deal of redundancy in the typing of terms; provided the
types of x, t, s are known, the types of (Az.t), (¢s) are known and need
not be indicated by a superscript. In general, we shall omit type-indications
whenever possible without creating confusion. When writing ts it is always
assumed that this is a meaningful application, and hence that for suitable
A, B the term ¢ has type A — B, s type A.

If the type of the whole term is omitted, we usually simplify (¢s) by
dropping the outer parentheses and writing simply ts. The abbreviation
tity.. .1, is defined by recursion on n as (tity...t,—1)ts, 1€ tita.. .ty is
(... ((t1t2)t3 .. )tn).

For Az;.(Aza.(...(Azn.t)...)) we write Aziz...z,.t. Application binds
more strongly than Az., so Az.tt' is Az.(¢t'), not (Az.t)t’.

A frequently used alternative notation for z4,t% is z: A, t: B respectively.
The notations ¢4 and #: A are used interchangeably and may occur mixed;
readability determines the choice. X

EXAMPLES. kf‘B = AzdyB a4, Sf’B’C = AgABC)yADB A 1o (y2).

1.2.3. DEFINITION. The set FV(t) of variables free in ¢ is specified by:

FV(z4) :=z4,
FV(ts) :=FV(t)UFV(s),
FV(Az.t) .= FV(t) \ {z}. x

1.2.4. DEFINITION. (Substitution) The operation of substitution of a term
s for a variable z in a term ¢ (notation t[z/s]) may be defined by recursion
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on the complexity of ¢, as follows.

z[z/s] =3,

yle/s] =yfory #Fa,

(trt)[z/s] = t1[z/s]ta]x/s],

(Az.t)[z/s] == Az.t,

(Ay.t)[z/s] == Ay.tlz/s] for y £ z; wlo.g y & FV(s).

A similar definition may be given for simultaneous substitution ¢t[Z/3]. X

LEMMA. (Substitution lemma) If ¢ # y, = ¢ FV(t,), then

tlz/tlly/ta] = tly/ta][z/t1ly/te]].

Proor. By induction on the depth of ¢. X

1.2.5. DEFINITION. (Conversion, reduction, normal form) Let T be a set
of terms, and let conv be a binary relation on T, written in infix notation:
t conv s. If tconvs, we say that ¢ converts to s; t is called a redex or
convertible term, and s the conversum of t. The replacement of a redex by
its conversum is called a conversion. We write ¢ =1 s (t reduces in one step
to s) if s is obtained from ¢ by replacement of (an occurrence of) a redex
t' of t by a conversum t” of ¢, i.e. by a single conversion. The relation >
(“properly reduces t0”) is the transitive closure of > and > (“reduces to”) is
the reflexive and transitive closure of >;. The relation > is said to be the
notion of reduction generated by cont. <;, <, < are the relations converse to
>1, >, >~ respectively.

With the notion of reduction generated by conv we associate a relation on
T called conversion equality: t =cony s (t is equal by conversion to s) if there
is a sequence fy,...,t, with tg =t, t, = s, and ¢; < t;41 or t; > ¢;4; for each
1, 0 < 1 < n. The subscript “conv” is usually omitted when clear from the
context.

A term t is in normal form, or t is normal, if t does not contain a redex. ¢
has a normal form if there is a normal s such that ¢ > s.

A reduction sequence is a {finite or infinite) sequence of pairs (¢, dg), (t1, 1),
(tg,d2), ... with §; an {occurrence of a) redex in ¢; and #; > #;;,; by conversion
of é;, for all 4. This may be written as

8o 81 82
to=1t1 =1t 1 ...

We often omit the §;, simply writing to > t1 >y t2... .

Finite reduction sequences are partially ordered under the initial part re-
lation (“sequence o is an initial part of sequence 7”); the collection of finite
reduction sequences starting from a term t forms a tree, the reduction tree
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of ¢. The branches of this tree may be identified with the collection of all
infinite and all terminating finite reduction sequences.

A term is strongly normalizing (is SN) if its reduction tree is finite. pY

REMARKS. (i) As to the terminology, in the literature on lambda calculus
and combinatory logic, writers use mostly “contraction”, “contracts”, “con-
tractum”, instead of “conversion”, “converts”, “conversum”. In the lambda
calculus literature “conversion” is used for a more general notion: there ¢
converts to s if ¢t and s can be shown to be equal by reduction steps (go-
ing in both directions). On the other hand, there is a tradition, deriving
from Prawitz [1965], of using “conversion” instead of “contraction” for the
corresponding notion applied to natural deductions.

Moreover, “contraction” is also widely used in the literature on Gentzen
systems (to be discussed later) for a specific deduction rule, whereas the
notion of “conversion” of the lambda calculus literature is hardly used here.
Therefore after prolonged hesitation we have chosen the terminology adopted
here.

(ii) Usually it is more convenient to think of the reduction tree of a term
t as a tree with its nodes labelled with terms; ¢ is put at the root, and if s

s
is the label of the node v, there is, for each pair (s',4) such that s =, &, an
immediate successor v/ to v, with label s

Instead of the notion defined above, we may also consider a less refined
notion of reduction sequence by disregarding the redexes; that is to say, we
identify sequences

bg ' 42 -60 €1 €2
to>1t1>1%>1... and t6>1t3>1t'2>1

if t; = t; for all %. The notion of reduction tree is then changed accordingly.
The arguments in this book using reduction sequences hold with both notions
of reduction sequence.

NOTATION. We shall distinguish different conversion relations by subscripts;
so we have, for example, contg, contg, (to be defined below). Similarly for
the associated relations of one-step reduction: »g1, >, =3, etc. We write
=g instead of =cont, etc. b

1.2.6. EXAMPLES. For us, the most important reduction is the one induced
by B-conversion:

(Az4.t5)s* contg t5[z4/s].
n-conversion is given by

Az#.tz cont, t (z € FV(2)).
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Bn-conversion contg, is contg U cont,,.

It is to be noted that in defining >g1, >g,1 conversion of redexes occur-
ring within the scope of a A-abstraction operator is permitted. However,
no free variables may become bound when executing the substitution in a
B-conversion. An example of a reduction sequence is the following:

(Azyz.zz(yz))(Avwv.u)(Au'v' ') g4
(Ayz.(Quv.u)z(yz))(Au'v' o) >~8.1
(Ayz.(Av.z){yz)) (A'v o) 8.1
E\/\yz.z)(/\u’v’.u’) = 8,1

Relative to contg, conversion of different redexes may yield the same result:
(Az.yz)z 1 yz either by converting the f-redex (Az.yz)z or by converting
the n-redex Az.yx. So here the crude and the more refined notion of reduction
sequence, mentioned above, differ.

DEFINITION. A relation R is said to be confluent, or to have the Church-
Rosser property (CR), if, whenever ¢ty Rt; and ty Rt,, then there is a t3 such
that ¢; R ¢35 and t; Rt3. A relation R is said to be weakly confluent, or to
have the weak Church-Rosser property (WCR), if, whenever to Ry, ¢ty Ris
then there is a t3 such that t; R* t3, ty R*t3, where R* is the reflexive and
transitive closure of R. X

1.2.7. THEOREM. For a confluent reduction relation > the normal forms
of terms are unique. Furthermore, if > is a confluent reduction relation we
have: t = t' iff there is a term t” such that t > t" and t' > t".

PRrROOF. The first claim is obvious. The second claim is proved as follows.
If ¢t = ¢’ (for the equality induced by >), then by definition there is a chain
t =tg, t1,..., t, = t/, such that for all 4 < n ¢; = t;1, or t;4; > t;. The
existence of the required ¢’ is now established by induction on n. Consider
the step from n to n + 1. By induction hypothesis there is an s such that
to = 8, tn = 5. Ity > ty, take t”" = s; if ¢, = t,11, use the confluence to
find a ¢” such that s = ¢’ and t,,; > t". X

1.2.8. THEOREM. (Newman’s lemma) Let = be the transitive and reflexive
closure of »1, and let >, be weakly confluent. Then the normal form w.r.t.
> of a strongly normalizing t is unique. Moreover, if all terms are strongly
normalizing w.r.t. >, then the relation > is confluent.

ProoOF. Assume WCR, and let us write s € UN to indicate that s has a
unique normal form. If a term is strongly normalizing, then so are all terms
occurring in its reduction tree. In order to show that a strongly normalizing ¢
has a unique normal form (and hence satisfies CR), we argue by contradiction.
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We show that if £ € SN, t € UN, then we can find a t; < ¢ with ¢; ¢ UN.
Repeating this construction leads to an infinite sequence ¢ > &, > £ > ...
contradicting the strong normalizability of ¢.

So let t € SN, ¢t € UN. Then there are two reduction sequences ¢ >; t] >
th .1t and t > ¢t >y 15 > ... >y t” with ¢, ¢ distinct normal terms.
Then either ] = t{, or ¢; # t{. In the first case we can take ¢; := t] = t{.
In the second case, by WCR we can find a t* such that ¢* < ¢},¢]; ¢t € SN,
hence t* > #* for some normal t". Since ¢’ # " or t" # t”, either t| ¢ UN
or t] & UN; so take t; := t] if ¢/ # ¢, ¢; := ¢{ otherwise. The final statement
of the theorem follows immediately. X

1.2.9. DEFINITION. The simple typed lambda calculus A_, is the calculus of
B-reduction and S-equality on the set of terms of A_, defined in 1.2.2. More
explicitly, A_, has the term system as described, with the following axioms
and rules for < (is <) and = (is =g):

tet Az t8)s? = tB[zh /54

t>s t>s t> s t>s s
rt > rs tr = sr Az.t = Azr.s t=r
t=s t=s t=s s=r

t=s s=1 t=r

The extensional simple typed lambda calculus A, is the calculus of fn-
reduction and Bn-equality =g, and the set of terms A_,; in addition to the
axioms and rules already stated for the calculus A_, there is the axiom

Aztz =t (z € FV(t)). X

1.2.10. LEMMA. (Substitutivity of =g and >=g,) For > either =g or »g, we
have

if s = &' then s[y/s"] = s'[y/s"].

PRrOOF. By induction on the depth of a proof of s = §'. It suffices to check
the crucial basis step, where s is (Az.t)t', and s is t{z/t']: (Az.t)t'[y/s"] =
(Az.(tly/s"))t'[y/s"] = tly/s"|[z/t[y/s"]] = t{z/¥'][y/s"] using (1.2.4). Here it
is assumed that = Z y, z € FV(s") (if not, rename ). X

1.2.11. PROPOSITION. >z and »g,1 are weakly confluent.

ProOF. By distinguishing cases. If the conversions leading from t to ¢ and
from t to t’ concern disjoint redexes, then ¢ is simply obtained by converting
both redexes. More interesting are the cases where the redexes are nested.



